January 14, 2025

Pierreloti Chelsea

Latest technological developments

Choosing source of microorganisms and processing technology for next generation beet bioinoculant

Choosing source of microorganisms and processing technology for next generation beet bioinoculant

  • 1.

    Gveroska, B., Miceska, G., Dimitrieski, M. & Korubin-Aleksoska, A. Use of biopreparates in Tobacco protection: contribution to sustainable agriculture. Türk Tarım ve Doğa Bilim. Derg. 1, 1509–1517 (2014).


    Google Scholar
     

  • 2.

    Baez-Rogelio, A., Morales-García, Y. E., Quintero-Hernández, V. & Muñoz-Rojas, J. Next generation of microbial inoculants for agriculture and bioremediation. Microb. Biotechnol. 10, 19–21 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Pretty, J. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 447–465 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Malusá, E., Sas-Paszt, L. & Ciesielska, J. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. Sci. World J. 2012, 1–12 (2012).

    Article 

    Google Scholar
     

  • 5.

    Szymańska, S. et al. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol. Res. 182, 68–79 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 6.

    Szymańska, S., Płociniczak, T., Piotrowska-Seget, Z. & Hrynkiewicz, K. Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L. – community structure and metabolic potential. Microbiol. Res. 192, 37–51 (2016).

  • 7.

    Hrynkiewicz, K. & Patz, S. Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. J. Adv. Res. 19, 49–56 (2019).

  • 8.

    Alori, E. T. & Babalola, O. O. Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 9, 2213 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Prakash, O., Nimonkar, Y. & Shouche, Y. S. Practice and prospects of microbial preservation. FEMS Microbiol. Lett. 339, 1–9 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Park, J. E., Lee, K. H. & Jahng, D. Effect of trehalose on bioluminescence and viability of freeze-dried bacterial cells. J. Microbiol. Biotechnol. 12, 349–353 (2002).

    CAS 

    Google Scholar
     

  • 11.

    Reina-Bueno, M. et al. Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens. PLoS ONE 7, e33587 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 12.

    Lee, H.-J., Yoon, Y.-S. & Lee, S.-J. Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis. 9, 712 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 13.

    Oren, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4, 2 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 14.

    Han, J. et al. Transcriptomic and ectoine analysis of halotolerant Nocardiopsis gilva YIM 90087T under salt stress. Front. Microbiol. 9, 618 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Roberts, M. F. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1, 5 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 16.

    Czech, L. et al. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes (Basel). 9, 177 (2018).

  • 17.

    Parnell, J. J. et al. From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front. Plant Sci. 7, 1110 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Hardoim, P. R. & van Elsas, J. D. Properties of Bacterial Endophytes Leading to Maximized Host Fitness. in Molecular Microbial Ecology of the Rhizosphere 405–411 (John Wiley & Sons, Inc., 2013). doi:https://doi.org/10.1002/9781118297674.ch37

  • 20.

    Patle, P. et al. Endophytes in plant system: Roles in growth promotion, mechanism and their potentiality in achieving agriculture sustainability. Int. J. Chem. Stud. 6, 270–274 (2018).


    Google Scholar
     

  • 21.

    Bencherif, K. et al. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci. Total Environ. 533, 488–494 (2015).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • 22.

    Abbas, H., Patel, R. M. & Parekh, V. R. Culturable endophytic bacteria from halotolerant Salvadora persica L.: isolation and plant growth promoting traits. Indian J. Appl. Microbiol. 10, 1074 (2018).

  • 23.

    Szymańska, S. et al. Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. Environ. Sci. Pollut. Res. 25, 25420–25431 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 24.

    Yadav, A. N. & Saxena, A. K. Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J. Appl. Biol. Biotechnol. 6, 48–55 (2018).

    CAS 

    Google Scholar
     

  • 25.

    Etesami, H. & Beattie, G. A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 9, 148 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Szymańska, S. et al. Boosting the Brassica napus L. tolerance to salinity by the halotolerant strain Pseudomonas stutzeri ISE12. Environ. Exp. Bot. 163, 55–68 (2019).

  • 27.

    Furtado, B. U., Gołębiewski, M., Skorupa, M., Hulisz, P. & Hrynkiewicz, K. Bacterial and fungal endophytic microbiomes of Salicornia europaea. Appl. Environ. Microbiol. 85, (2019).

  • 28.

    Dohm, J. C. et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505, 546–549 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 29.

    Rozema, J. et al. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes. AoB Plants 7, (2014).

  • 30.

    Bashir, O. et al. Soil microbe diversity and root exudates as important aspects of rhizosphere ecosystem. in Plant, Soil and Microbes 337–357 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-29573-2_15

  • 31.

    Nannipieri, P. et al. Effects of root exudates in microbial diversity and activity in rhizosphere soils. in 339–365 (Springer, Berlin, Heidelberg, 2008). https://doi.org/10.1007/978-3-540-75575-3_14

  • 32.

    Shi, S. et al. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol. Ecol. 77, 600–610 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Kandel, S., Joubert, P. & Doty, S. Bacterial endophyte colonization and distribution within plants. Microorganisms 5, 77 (2017).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Liu, H. et al. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front. Microbiol. 8, 2552 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Cheng, D., Tian, Z., Feng, L., Xu, L. & Wang, H. Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range. PeerJ 6, e6162 (2019).

  • 36.

    Velázquez-Sepúlveda, I., Orozco-Mosqueda, M. C., Prieto-Barajas, C. M. & Santoyo, G. Bacterial diversity associated with the rhizosphere of wheat plants (Triticum aestivum): Toward a metagenomic analysis. Phyton (B. Aires). 81, 81–87 (2012).

  • 37.

    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Kumar, V. et al. Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa. PLoS ONE 13, e0202127 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Erlacher, A. et al. Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front. Microbiol. 6, 53 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Tsurumaru, H. et al. Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ. 30, 63–69 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Abdel-Motagally, F. M. F. & Attia, K. K. Response of sugar beet plants to nitrogen and potassium fertilization in sandy calcareous soil. Int. J. Agric. Biol. 11, 695–700 (2009).

    CAS 

    Google Scholar
     

  • 42.

    Zachow, C., Mueller, H., Tilcher, R. & Berg, G. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crops-and modern sugar beets. Front. Microbiol. 5, 415 (2014).

  • 43.

    Ofek-Lalzar, M. et al. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol. Ecol. 92, fiw152 (2016).

  • 44.

    Miliute, I., Buzaite, O., Baniulis, D. & Stanys, V. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste Agricu. 102, 465–478 (2015).

    Article 

    Google Scholar
     

  • 45.

    Brígido, C. et al. Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. Plants (Basel, Switzerland) 8, (2019).

  • 46.

    Correa-Galeote, D., Bedmar, E. J. & Arone, G. J. Maize endophytic bacterial diversity as affected by soil cultivation history. Front. Microbiol. 9, 484 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 47.

    Wemheuer, F. et al. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci. Rep. 7, 1–13 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 48.

    Mukhtar, S. et al. Microbial diversity and metagenomic analysis of the rhizosphere of para grass (Urochloa mutica) growing under saline conditions. Pakistan J. Bot. 48, 779–791 (2016).

    CAS 

    Google Scholar
     

  • 49.

    Gawor, J. et al. Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles 20, 403–413 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Khan, M. & Goel, R. Principles, applications and future aspects of cold-adapted PGPR. in Plant-Bacteria Interactions 195–212 (Wiley-VCH Verlag GmbH & Co. KGaA, 2008). https://doi.org/10.1002/9783527621989.ch10

  • 51.

    Skorupa, M. et al. Salt stress vs. salt shock-the case of sugar beet and its halophytic ancestor. BMC Plant Biol. 1–18 (2019).

  • 52.

    Bircher, L., Geirnaert, A., Hammes, F., Lacroix, C. & Schwab, C. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microb. Biotechnol. 11, 721–733 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Yan, N., Marschner, P., Cao, W., Zuo, C. & Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 3, 316–323 (2015).

    Article 

    Google Scholar
     

  • 54.

    Zhang, K. et al. Salinity Is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4, (2019).

  • 55.

    Szymańska, S., Piernik, A. & Hrynkiewicz, K. Metabolic potential of microorganisms associated with the halophyte Aster tripolium L. in saline soils. Ecol. Quest. 18, 9–19 (2013).

  • 56.

    Berninger, T., González López, Ó., Bejarano, A., Preininger, C. & Sessitsch, A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb. Biotechnol. 11, 277–301 (2018).

  • 57.

    Nounjan, N. & Theerakulpisut, P. Effects of Exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant, Soil Environ. 58, 309–315 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Arraes Pereira, P. A., Oliver, A., Bliss, F. A., Crowe, L. & Crowe, J. Preservation of rhizobia by lyophilization with trehalose. Pesqui. Agropecu. Bras. 37, 831–839 (2002).

  • 59.

    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. & Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 61.

    Pham, V. H. T., Kim, J. & Jeong, S.-W. Psychrobacillus soli sp. nov., capable of degrading oil, isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 65, 3046–3052 (2015).

  • 62.

    Sáez-Nieto, J. A. et al. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect. 19, 19–27 (2017).

  • 63.

    Lane, D. J. 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics (eds Stackebrandt, E. & Goodfellow, M.) 115–175 (Wiley, New York, 1991).


    Google Scholar
     

  • 64.

    Thiem, D., Gołębiewski, M., Hulisz, P., Piernik, A. & Hrynkiewicz, K. How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots?. Front. Microbiol. 9, 1–15 (2018).

    Article 

    Google Scholar
     

  • 65.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 69.

    Huang, X. & Madan, A. CAP3: A DNA Sequence Assembly Program. Genome Res. 9, 868–877 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar