June 30, 2022

pierrelotichelsea

Latest technological developments

Choosing source of microorganisms and processing technology for next generation beet bioinoculant

  • 1.

    Gveroska, B., Miceska, G., Dimitrieski, M. & Korubin-Aleksoska, A. Use of biopreparates in Tobacco protection: contribution to sustainable agriculture. Türk Tarım ve Doğa Bilim. Derg. 1, 1509–1517 (2014).


    Google Scholar
     

  • 2.

    Baez-Rogelio, A., Morales-García, Y. E., Quintero-Hernández, V. & Muñoz-Rojas, J. Next generation of microbial inoculants for agriculture and bioremediation. Microb. Biotechnol. 10, 19–21 (2017).

    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Pretty, J. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 447–465 (2008).

    PubMed 
    Article 

    Google Scholar
     

  • 4.

    Malusá, E., Sas-Paszt, L. & Ciesielska, J. Technologies for Beneficial Microorganisms Inocula Used as Biofertilizers. Sci. World J. 2012, 1–12 (2012).

    Article 

    Google Scholar
     

  • 5.

    Szymańska, S. et al. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiol. Res. 182, 68–79 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 6.

    Szymańska, S., Płociniczak, T., Piotrowska-Seget, Z. & Hrynkiewicz, K. Endophytic and rhizosphere bacteria associated with the roots of the halophyte Salicornia europaea L. – community structure and metabolic potential. Microbiol. Res. 192, 37–51 (2016).

  • 7.

    Hrynkiewicz, K. & Patz, S. Salicornia europaea L. as an underutilized saline-tolerant plant inhabited by endophytic diazotrophs. J. Adv. Res. 19, 49–56 (2019).

  • 8.

    Alori, E. T. & Babalola, O. O. Microbial inoculants for improving crop quality and human health in Africa. Front. Microbiol. 9, 2213 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Prakash, O., Nimonkar, Y. & Shouche, Y. S. Practice and prospects of microbial preservation. FEMS Microbiol. Lett. 339, 1–9 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 10.

    Park, J. E., Lee, K. H. & Jahng, D. Effect of trehalose on bioluminescence and viability of freeze-dried bacterial cells. J. Microbiol. Biotechnol. 12, 349–353 (2002).

    CAS 

    Google Scholar
     

  • 11.

    Reina-Bueno, M. et al. Role of trehalose in salinity and temperature tolerance in the model halophilic bacterium Chromohalobacter salexigens. PLoS ONE 7, e33587 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar
     

  • 12.

    Lee, H.-J., Yoon, Y.-S. & Lee, S.-J. Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis. 9, 712 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 13.

    Oren, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Systems 4, 2 (2008).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 14.

    Han, J. et al. Transcriptomic and ectoine analysis of halotolerant Nocardiopsis gilva YIM 90087T under salt stress. Front. Microbiol. 9, 618 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Roberts, M. F. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1, 5 (2005).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 16.

    Czech, L. et al. Role of the extremolytes ectoine and hydroxyectoine as stress protectants and nutrients: genetics, phylogenomics, biochemistry, and structural analysis. Genes (Basel). 9, 177 (2018).

  • 17.

    Parnell, J. J. et al. From the lab to the farm: an industrial perspective of plant beneficial microorganisms. Front. Plant Sci. 7, 1110 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Compant, S., Samad, A., Faist, H. & Sessitsch, A. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19, 29–37 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Hardoim, P. R. & van Elsas, J. D. Properties of Bacterial Endophytes Leading to Maximized Host Fitness. in Molecular Microbial Ecology of the Rhizosphere 405–411 (John Wiley & Sons, Inc., 2013). doi:https://doi.org/10.1002/9781118297674.ch37

  • 20.

    Patle, P. et al. Endophytes in plant system: Roles in growth promotion, mechanism and their potentiality in achieving agriculture sustainability. Int. J. Chem. Stud. 6, 270–274 (2018).


    Google Scholar
     

  • 21.

    Bencherif, K. et al. Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with Tamarix articulata Vahll rhizosphere in arid and semi-arid Algerian areas. Sci. Total Environ. 533, 488–494 (2015).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar
     

  • 22.

    Abbas, H., Patel, R. M. & Parekh, V. R. Culturable endophytic bacteria from halotolerant Salvadora persica L.: isolation and plant growth promoting traits. Indian J. Appl. Microbiol. 10, 1074 (2018).

  • 23.

    Szymańska, S. et al. Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. Environ. Sci. Pollut. Res. 25, 25420–25431 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 24.

    Yadav, A. N. & Saxena, A. K. Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture. J. Appl. Biol. Biotechnol. 6, 48–55 (2018).

    CAS 

    Google Scholar
     

  • 25.

    Etesami, H. & Beattie, G. A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 9, 148 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Szymańska, S. et al. Boosting the Brassica napus L. tolerance to salinity by the halotolerant strain Pseudomonas stutzeri ISE12. Environ. Exp. Bot. 163, 55–68 (2019).

  • 27.

    Furtado, B. U., Gołębiewski, M., Skorupa, M., Hulisz, P. & Hrynkiewicz, K. Bacterial and fungal endophytic microbiomes of Salicornia europaea. Appl. Environ. Microbiol. 85, (2019).

  • 28.

    Dohm, J. C. et al. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris). Nature 505, 546–549 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar
     

  • 29.

    Rozema, J. et al. Comparing salt tolerance of beet cultivars and their halophytic ancestor: consequences of domestication and breeding programmes. AoB Plants 7, (2014).

  • 30.

    Bashir, O. et al. Soil microbe diversity and root exudates as important aspects of rhizosphere ecosystem. in Plant, Soil and Microbes 337–357 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-29573-2_15

  • 31.

    Nannipieri, P. et al. Effects of root exudates in microbial diversity and activity in rhizosphere soils. in 339–365 (Springer, Berlin, Heidelberg, 2008). https://doi.org/10.1007/978-3-540-75575-3_14

  • 32.

    Shi, S. et al. Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol. Ecol. 77, 600–610 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 33.

    Kandel, S., Joubert, P. & Doty, S. Bacterial endophyte colonization and distribution within plants. Microorganisms 5, 77 (2017).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Liu, H. et al. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front. Microbiol. 8, 2552 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 35.

    Cheng, D., Tian, Z., Feng, L., Xu, L. & Wang, H. Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range. PeerJ 6, e6162 (2019).

  • 36.

    Velázquez-Sepúlveda, I., Orozco-Mosqueda, M. C., Prieto-Barajas, C. M. & Santoyo, G. Bacterial diversity associated with the rhizosphere of wheat plants (Triticum aestivum): Toward a metagenomic analysis. Phyton (B. Aires). 81, 81–87 (2012).

  • 37.

    Bulgarelli, D. et al. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Kumar, V. et al. Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa. PLoS ONE 13, e0202127 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Erlacher, A. et al. Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front. Microbiol. 6, 53 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 40.

    Tsurumaru, H. et al. Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ. 30, 63–69 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    Abdel-Motagally, F. M. F. & Attia, K. K. Response of sugar beet plants to nitrogen and potassium fertilization in sandy calcareous soil. Int. J. Agric. Biol. 11, 695–700 (2009).

    CAS 

    Google Scholar
     

  • 42.

    Zachow, C., Mueller, H., Tilcher, R. & Berg, G. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crops-and modern sugar beets. Front. Microbiol. 5, 415 (2014).

  • 43.

    Ofek-Lalzar, M. et al. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. FEMS Microbiol. Ecol. 92, fiw152 (2016).

  • 44.

    Miliute, I., Buzaite, O., Baniulis, D. & Stanys, V. Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste Agricu. 102, 465–478 (2015).

    Article 

    Google Scholar
     

  • 45.

    Brígido, C. et al. Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. Plants (Basel, Switzerland) 8, (2019).

  • 46.

    Correa-Galeote, D., Bedmar, E. J. & Arone, G. J. Maize endophytic bacterial diversity as affected by soil cultivation history. Front. Microbiol. 9, 484 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 47.

    Wemheuer, F. et al. Bacterial endophyte communities of three agricultural important grass species differ in their response towards management regimes. Sci. Rep. 7, 1–13 (2017).

    Article 
    CAS 

    Google Scholar
     

  • 48.

    Mukhtar, S. et al. Microbial diversity and metagenomic analysis of the rhizosphere of para grass (Urochloa mutica) growing under saline conditions. Pakistan J. Bot. 48, 779–791 (2016).

    CAS 

    Google Scholar
     

  • 49.

    Gawor, J. et al. Evidence of adaptation, niche separation and microevolution within the genus Polaromonas on Arctic and Antarctic glacial surfaces. Extremophiles 20, 403–413 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 50.

    Khan, M. & Goel, R. Principles, applications and future aspects of cold-adapted PGPR. in Plant-Bacteria Interactions 195–212 (Wiley-VCH Verlag GmbH & Co. KGaA, 2008). https://doi.org/10.1002/9783527621989.ch10

  • 51.

    Skorupa, M. et al. Salt stress vs. salt shock-the case of sugar beet and its halophytic ancestor. BMC Plant Biol. 1–18 (2019).

  • 52.

    Bircher, L., Geirnaert, A., Hammes, F., Lacroix, C. & Schwab, C. Effect of cryopreservation and lyophilization on viability and growth of strict anaerobic human gut microbes. Microb. Biotechnol. 11, 721–733 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 53.

    Yan, N., Marschner, P., Cao, W., Zuo, C. & Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 3, 316–323 (2015).

    Article 

    Google Scholar
     

  • 54.

    Zhang, K. et al. Salinity Is a key determinant for soil microbial communities in a desert ecosystem. mSystems 4, (2019).

  • 55.

    Szymańska, S., Piernik, A. & Hrynkiewicz, K. Metabolic potential of microorganisms associated with the halophyte Aster tripolium L. in saline soils. Ecol. Quest. 18, 9–19 (2013).

  • 56.

    Berninger, T., González López, Ó., Bejarano, A., Preininger, C. & Sessitsch, A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb. Biotechnol. 11, 277–301 (2018).

  • 57.

    Nounjan, N. & Theerakulpisut, P. Effects of Exogenous proline and trehalose on physiological responses in rice seedlings during salt-stress and after recovery. Plant, Soil Environ. 58, 309–315 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Arraes Pereira, P. A., Oliver, A., Bliss, F. A., Crowe, L. & Crowe, J. Preservation of rhizobia by lyophilization with trehalose. Pesqui. Agropecu. Bras. 37, 831–839 (2002).

  • 59.

    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 60.

    Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J. & Setlow, P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64, 548–572 (2000).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 61.

    Pham, V. H. T., Kim, J. & Jeong, S.-W. Psychrobacillus soli sp. nov., capable of degrading oil, isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 65, 3046–3052 (2015).

  • 62.

    Sáez-Nieto, J. A. et al. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes New Infect. 19, 19–27 (2017).

  • 63.

    Lane, D. J. 16S/23S rRNA sequencing. In Nucleic acid techniques in bacterial systematics (eds Stackebrandt, E. & Goodfellow, M.) 115–175 (Wiley, New York, 1991).


    Google Scholar
     

  • 64.

    Thiem, D., Gołębiewski, M., Hulisz, P., Piernik, A. & Hrynkiewicz, K. How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots?. Front. Microbiol. 9, 1–15 (2018).

    Article 

    Google Scholar
     

  • 65.

    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 67.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 69.

    Huang, X. & Madan, A. CAP3: A DNA Sequence Assembly Program. Genome Res. 9, 868–877 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar